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Abstract 

Welch and Le Claire's theory (Philos. Mag., 16 (1967) 981) is extended to include the relaxation strength of the 
Young and bulk moduli. A complete set of equations is given for the calculation of the relaxation strength of 
all the moduli in both f.c.c, and b.c.c, alloys. The relaxation strength of the Young modulus in /3-brass and 
CuaAu is discussed in terms of these equations. Some ordering parameters are obtained from the anelastic data, 
which are confirmed by independent estimates. 

1. Theoretical background 

Recently Povolo and Mosca [1] have extended Welch 
and Le Claire's theory [2] to the case of longitudinal 
excitations, where the relaxation of the Young modulus 
is involved. Not only f.c.c, but also b.c.c, lattices were 
considered to obtain a complete set of equations de- 
scribing the Zener relaxation strength of the torsion, 
Young and bulk moduli in substitutional alloys of cubic 
structure. This approach takes into account both first- 
and second-nearest-neighbour interactions and order 
parameters out to eight neighbours. 

The complete set of equations obtained is 
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where ao is the lattice parameter, m A and rnB are the 
atomic fractions of A and B atoms respectively in the 
alloy, f~ is the atomic volume, dV1/dr is the gradient 
of the ordering energy at the nearest-neighbour (NN) 
separation, R is the ratio of the gradient at the next- 
nearest-neighbour (NNN) separation to that at the NN 
separation, i.e. R=(dV2/dr) / (dV1/dr) ,  S r is the relaxed 
compliance for a (001)[010] shear, S'r is the relaxed 
compliance for a ( l l0)[l i0] shear, Sr' is the relaxed 
compliance for a hydrostatic pressure, V1 and V2 are 
the ordering energies for NN and NNN atoms re- 
spectively and r is the interatomic distance. The coef- 
ficients ~7 and # are functions of temperature and 
represent coupling constants which couple stress-in- 
duced changes in the ordering energy to changes in 
the degree of order. 

The anisotropy of the relaxation can be characterized 
in terms of the "anisotropy factor" A defined as [2] 

SrAs, 
A -  S;as (5) 

Taking into account eqns. (3) and (4), eqn. (5) can be 
written as 

3 ~'22 R2 for b.c.c. (6) 
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Figure 1 shows the dependence of the anisotropy 
factor for b.c.c, alloys of compositions AB and A3B on 
the reduced temperature and gradient ratio using p = V2/ 
VI= 0.5 [3]. The temperature dependence of A comes 
from the fact that the coupling constants are temperature 
dependent. 

The Young and torsion moduli can be calculated by 
combining As, As, and As, with the orientation F of the 
crystal relative to the stress axis. In fact, for the relaxation 
strength of the Young modulus the following expression 
can be written: 

AE = ( a S ' +  aS") - 3 ( 8 S ' -  8S)F (7) 
(sa +s')-3(S'u-&)r 

It is generally observed that the temperature de- 
pendence of the relaxation strength obeys a 
Curie-Weiss-type law [4] 
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Fig. 2. Reciprocal of relaxation strength (arbitrary units) of S 
and S'  shear vs. reduced temperature in b.c.c, alloys of composition 
A3B. The straight lines give the high temperature limit. 

A~,' 0t T -  T~ ANE (8) 

where T ~  E is the anelastic critical temperature at 
which ordering would occur spontaneously if atomic 
movements were possible. With eqns. (1)-(4) T~ ~'~E can 
be expressed analytically only in the high temperature 
limit where the short-range order parameters ai are 
lower than unity and for R =0. In general the exact 
temperature dependence of the relaxation strength can 
be evaluated only numerically. For example, Fig. 2 
shows the values obtained for the temperature depen- 
dence of As 1 and A~, 1 for b.c.c, alloys with composition 
A3 B. It is evident that As ~ and A~ 1 change linearly 
with T up to high values of the reduced temperature 
(kT/2V,). 
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Fig. 1. Anisotropy factor vs. reduced temperature for b.c.c, alloys 
of compositions A3B (full curve) and AB (dashed curve) with 
p=0.5. 

2. Applications 

Expressions (1)-(4) and those obtained for As and 
As, in f.c.c, alloys by Welch and Le Claire [2] can be 
used to deduce the relaxation strength of the Young 
modulus in f.c.c, and b.c.c, alloys. 

A re-evaluation of the experimental results of Artman 
and Thompson [5, 6] on b.c.c. /3-Cu-50at.%Zn alloy 
gives the following values: A s = 4 × 1 0 - 4  and 
A s, = 15.4 × 10 -4 at 588 K. These values were computed 
by assuming a negligible contribution from aS", which 
should be very small owing to the small value of S" 
itself [6]. 

Murakami et al. [7] reported a value Va = 184 K for 
/3-CuZn, obtained by reproducing the phase diagram 
of mgxCu53_/Zn47 alloys, which leads to a reduced tem- 
perature of 1.59. 

The anisotropy factor for this alloy is 0.4, which gives 
R = _+ 0.43 according to eqn. (5) and coupling constants 
obtained by interpolating between the values reported 
by Povolo and Mosca [1]. Then, by using eqn. (4), it 
is possible to calculate dV1/dr as _+ 2.25 × 10- n N. Once 
R and dV1/dr are known, As, and AE can be evaluated. 
A positive value for R, i.e. R = 0.43, was chosen, since 
this leads to a better agreement with the experimental 
data reported by Artman and Thompson for h E (see 
Fig. 3). 

Figure 4 shows TE ANE obtained theoretically vs. F. It 
is clear that T ANE is strongly anisotropic. Unfortunately, 
there are no experimental values for these temperatures. 

More recently Povolo and Armas [8] reported ane- 
lastic data in f.c.c. C u 3 A u  at 673 K where 
As, is smaller than As,. Then a first approximation for 
RE can be written in the simple form 
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Fig. 3. Orientation dependence of relaxation strength of Young 
modulus in fl-brass: *, values calculated from refs. 5 and 6; curve, 
theoretical calculations. 
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Fig. 4. Theoretical orientation dependence of anelastic critical 
temperature for Young modulus in fl-brass. 

Re= AEo°°> __. As' 
Ago11> A---~ = 8.61 

The value Re = 8.01 is obtained theoretically by using 
I/1=358 K, R= -0.25 and dVfldr= -1 .25×10 -9 N as 
reported in ref. 9. It is seen that the theoretical value 
is very close to the experimental one. 

3. Discussion 

Some ordering parameters have been obtained in a 
fl-CuZn alloy by analysing the orientation dependence 
of the Zener relaxation and assuming R > 0, p > 0 and 
I/1> 0. The value used for R can be confirmed by 
independent calculations. In fact, de Rooy et al. [10] 
estimated the ordering energy as a function of the 
interatomic separation (by pseudopotential theory) for 

the CuZn system. From Fig. 3 of ref. 10 it is clear 
that dV1/dr and dV2/dr have the same sign, so that 
R > 0 (R = 0.48), as was assumed in the interpretation 
of the anelastic data. Harrison and Paskin [11] have 
provided theoretical reasons for expecting that long- 
range oscillatory interactions should be significant in 
the/3-CuZn system, i.e. V(r)at cos(2kfr+ q~)/r 3, where kf 
is the Fermi momentum and r is the interatomic sep- 
aration. In addition, these authors suggest that the 
most appropriate values for CuZn are ~b = ~-/2 and ~'/ 
2-0.28. Then with ~b = "rr/2 we find R--0.30, which is 
in agreement with the value obtained from the anelastic 
data. 

The values of R and dV1/dr obtained by Povolo and 
Armas in Cu3Au alloys (through anelastic data) have 
also been confirmed by independent estimates. 

4. Conclusions 

The sets of equations given by Welch and Le Claire 
and by Povolo and Mosca can be used to describe the 
main aspects of the relaxation strength of the Zener 
relaxation in f.c.c, and b.c.c, alloys. 

The ordering parameters obtained from the anelastic 
data can be confirmed by independent estimates. 

More experimental work on the orientation, tem- 
perature and composition dependence of the relaxation 
strength is needed to confirm the results reported in 
this paper. 
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